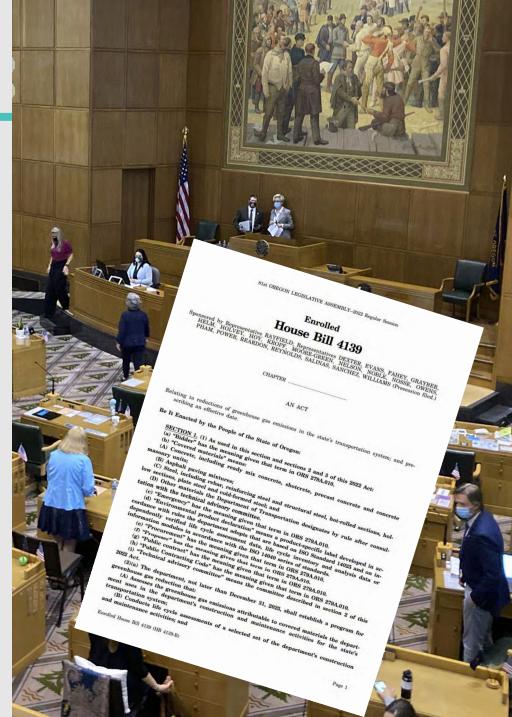
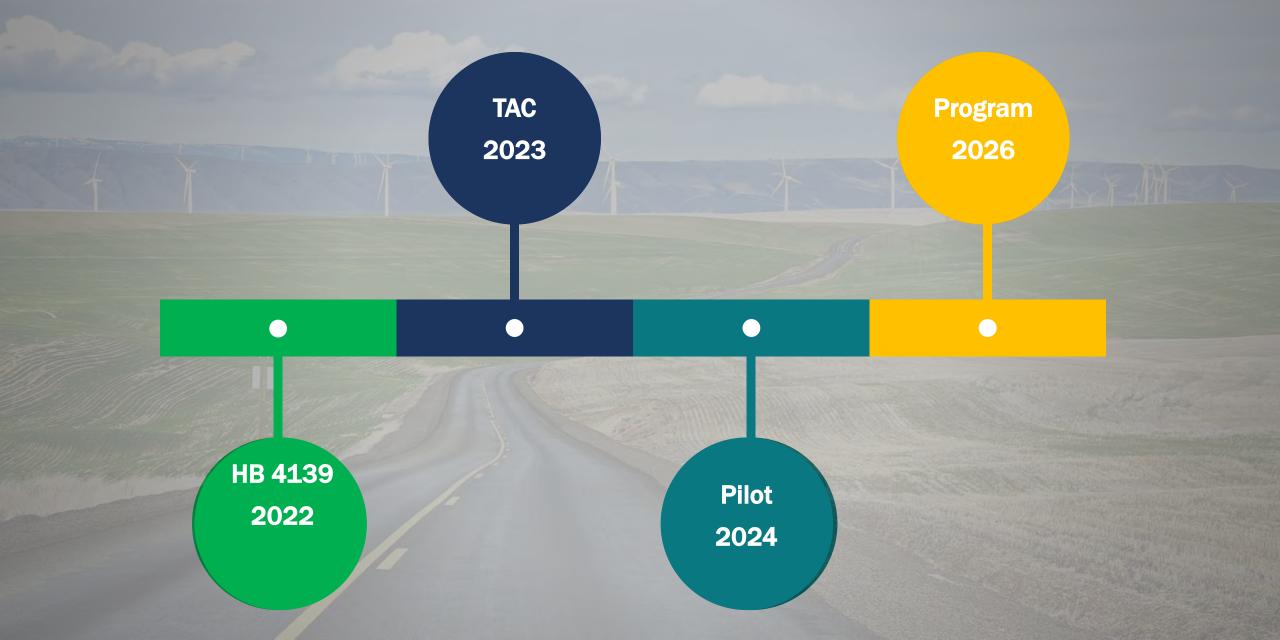
ODOT's Sustainability Program


February 9, 2024

Kevin Shearmire, PE ODOT Sustainability Engineer



Oregon House Bill 4139 (2022)

- Requires ODOT to set up a "program for GHG reductions".
- The agency to <u>collect EPDs</u> on asphalt, concrete and steel.
- "Product-Specific" Label
- Allows for regional variability and prioritization of quality / performance
- Set Program Rules with <u>Advisory</u> <u>Committee.</u>

Important Dates

HB 4139 – Implementation

EPD 101

- Type III EPD environmental declaration providing quantified environmental data using predetermined parameters, and where relevant, additional environmental information (ISO 14025)
 - Predetermined parameters based on ISO 14040 series

ENVIRONMENTAL IMPACTS Declared Product: Mix 3O1405260A • The Dalles Plant Description: ODOT CLASS 4000 Compressive strength: 4000 PSI at 28 days Declared Unit: 1 m³ of concrete (1 cyd) Gobal Warming Potential (kg CO2-eq) 406 (310) Ozone Depletion Potential (kg CFC-11-eq) 8.31E-6 (6.35E-6) Acidification Potential (kg SO2-eq) 1.86 (1.42) Extraphication Potential (kg Neet) 0.46 (0.35)

1.86 (1.42) Eutrophication Potential (kg N-eg) 0.46 (0.35) Photochemical Ozone Creation Potential 47.0 (35.9) (kg O3-eg) Abiotic Depletion, non-fossil (kg Sb-eq) 7.21E-5 (5.51E-5) Abiotic Depletion, fossil (MJ) 1,132 (865) Total Waste Disposed (kg) 111 (85.1) Consumption of Freshwater (m³) 3.45 (2.64) Product Components: natural aggregate (ASTM C33), Portland cement (ASTM C150), batch water (ASTM C1602), admixture (ASTM C494), admixture (ASTM C260)

Cradle to Gate (A1-A3)

Stade	Product		Construction		Use			End-of-life			Beyond				
Stage	A1	A2	A3	A4	A5	B1	B2	B3	B4	B5	C1	C2	C3	C4	D
Embodied	Raw material supply	Transport	Manufacturing	Transport	Construction and installation	Use	Maintenance	Repair	Replacement	Refurbishment	Demolition and deconstruction	Transport	Waste processing	Disposal	Credit for Reuse, Recycling and Recovery Potential
Operational				B6	B6 Energy use										

Image: Building Transparency (EC3), accessed 3 August 2023, https://buildingtransparency.org/ec3/creator-contacts/epds>.

Life Cycle Impacts

DECLARATION OF ENVIRONMENTAL INDICATORS DERIVED FROM LCA

Impact Assessment	Unit	A1	A2	A3	Total
Global warming potential	kg CO2-eq	337	60.0	8.89	406
Depletion potential of the stratospheric ozone layer (ODP)	kg CFC-11-eq	8.16E-6	2.31E-9	1.47E-7	8.31E-6
Eutrophication potential	kg N-eq	0.38	0.06	0.02	0.46
Acidification potential of soil and water sources (AP)	kg SO ₂ -eq	0.67	1.14	0.06	1.86
Formation potential of tropospheric ozone (POCP)	kg O3-eq	12.6	32.7	1.70	47.0

Product Category Rule for Environmental Product Declarations

PCR for Concrete v2.2 (including deviation)

Program Operator NSF International National Center for Sustainability Standards Valid through February 22, 2024 <u>ncss@nsf.org</u> © 2022 NSF International

Product Category Rules

- PCRS- set of specific rules, requirements and guidelines for developing Type III EPDs for one or more product categories (ISO 14025)
- ISO 21930
 - Subcategory PCRs
 - Asphalt
 - Ready-Mix
 - Precast Concrete
 - CMU
 - Steel

What does it take to develop an EPD?

- One to three months of staff time for initial data collection and entry.
- 12-months of plant-specific data (location, energy use).
- Mix-specific data (quantities of ingredients, transportation distance and transportation type).

Contractor vs Supplier

- Contractor
 - Responsible for purchasing materials
 - o Submittal Requirements

• Suppliers

 Need to supply EPD conforming to rules and policy adopted by ODOT.

Where is ODOT at?

- Currently in discussions with Industry and Subject Matter Experts
- Informative discussions with Technical Advisory Committee

 OAR- requiring collection of EPDs
 Specifications- contract language for EPD collection
 Policy- specific details of EPD requirements
- Performing detailed analysis of spending and materials

Thank you!

Kevin Shearmire, PE Kevin.J.Shearmire@odot.oregon.gov

